Cite this: Org. Biomol. Chem., 2012, 10, 1506

www.rsc.org/obc

COMMUNICATION

Efficient synthesis of multicyclic spirooxindoles *via* a cascade Michael/ Michael/oxa-Michael reaction of curcumins and isatylidene malononitriles[†]‡

Xiao-Gang Yin, Xin-Yun Liu, Zhi-Peng Hu and Ming Yan*

Received 28th November 2011, Accepted 5th December 2011 DOI: 10.1039/c2ob06995d

A cascade Michael/Michael/oxa-Michael reaction between curcumins and isatylidene malononitriles has been developed. Multicyclic spirooxindoles were prepared in excellent yields and diastereoselectivities. DMAP was found to catalyze this transformation efficiently under mild reaction conditions.

Multicyclic spirooxindoles are found in a range of natural products. Many of them, such as cycloplamine, strychnofoline and NITD609, possess interesting biological activities (Scheme 1).¹ Cycloplamine B was found to inhibit the growth of androgenindependent prostate cancer cells.² Strychnofoline isolated from the leaves of Strychnos usambarensis, showed potent antitumor activity.3 NITD609 may have potential therapeutic use for malaria.⁴ Extensive efforts have been made to develop synthetic methods of multicyclic spirooxindole scaffolds.⁵ The cascade reactions based on 3-methyleneindolinone and other indolinone derivatives are extremely attractive in terms of efficiency and atomic economy.^{6,7} Barbas III and co-workers developed a cascade Michael/aldol reaction of 3-substituted oxindoles and 3-methyleneindolinones. Bis-spirooxindoles were prepared in good yields and enantioselectivities.7a Chen and co-workers reported the enantioselective synthesis of bicyclic spirooxindoles via a cascade Michael/Michael/Michael/aldol reaction from 3-methyleneindolinones and enals.7b Other examples include the Michael/Michael reaction of 3-methyleneindolinones and enones,7c Michael/Michael/aldol reaction of 3-methyleneindolinones, aldehydes and enals,7d Michael/intramolecular cyclization of methyleneindolinones and α -isothiocyanato imides,^{7e} Michael/aldol reaction of 3-acyl-indolinones and enones.7f double Michael/aldol reaction of indolinones and enals,^{7g} aza-Michael/intramolecular cyclization of methyleneindolinones and α-bromoacetamides.^{7h}

In recent years, we have been interested in the organocatalytic synthesis of cyclic products *via* cascade/domino reactions.⁸ We

envision that curcumin, which is readily available from the spice turmeric, is a valuable multi-functional nucleophile for cascade reactions (Scheme 2).⁹ Recently Ye and co-workers reported the organocatalytic asymmetric conjugate addition of curcumins to nitroalkenes.¹⁰ Namboothiri and co-workers developed cascade reactions of curcumins with nitroalkenes and α -bromonitroalkenes. Highly functionalized cyclohexanones and dihydrofurans were obtained in good yields and diastereoselectivities.¹¹ Despite these efforts, the full potential of curcumins as multi-functional nucleophiles for cascade reactions remains to be explored. In this paper, we report an efficient cascade reaction of curcumins and isatylidene malononitriles (Scheme 2). Multicyclic spirooxindoles were prepared in excellent yields and diastereoselectivities.

The reaction of isatylidene malononitrile 1a and curcumin 2a was examined in ethanol at room temperature. A number of bases were used as the catalyst. Multicyclic spirooxindoles 3a/3a' were obtained and the results are summarized in Table 1.

Scheme 2 Curcumins and isatylidene malononitriles as multifunctional substrates.

Institute of Drug Synthesis and Pharmaceutical Process, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China

[†]This article is part of the joint ChemComm-Organic & Biomolecular Chemistry 'Organocatalysis' web themed issue.

[‡] Electronic supplementary information (ESI) available. CCDC reference number 847692. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2ob06995d

 Table 1
 Screening of catalysts^a

^{*a*} The reactions were carried out with **1a** (0.05 mmol), **2a** (0.05 mmol) and catalyst (0.01 mmol) in EtOH (1 mL) at room temperature. ^{*b*} Determined by ¹H NMR analysis of the crude product. ^{*c*} Isolated yields after column chromatography.

Inorganic bases, such as NaOH and K_2CO_3 resulted in low yields and diastereoselectivities (Table 1, entries 1 and 2). Organic bases including Et₃N, DABCO, DMAP, pyrrolidine, piperidine, *N*-methylpyrrolidine and *N*-methylmorpholine provided **3a** in good yields and diastereoselectivities (Table 1, entries 3–9). DMAP was preferred in terms of the yield and diastereoselectivity (Table 1, entry 5). Less basic pyridine is inefficient for this reaction (Table 1, entry 10).

The effect of reaction solvent was also studied and the results are summarized in Table 2. A low yield was obtained in hexane due to poor solubility of isatylidene malononitrile (Table 2, entry 1). Good yields and moderate diastereoselectivities were achieved in toluene, CH_2Cl_2 , $CHCl_3$, THF, AcOEt and CH_3CN (Table 2, entries 2–7). The non-protonic polar solvent DMF gave a poor yield of **3a** (Table 2, entry 8). Alcohols are more suitable solvents for the reaction (Table 2, entries 9–11). Ethanol was preferred in terms of the yield and diastereoselectivity. The reaction was also examined at 0 °C, however only a low yield was obtained. Isatylidene malononitrile is not fully soluble at this temperature in ethanol.

The scope of reaction substrates was examined and the results are summarized in Table 3. Isatylidene malononitriles with substitutions (5-MeO, 6-Cl and 7-Br) at the phenyl ring provided the products in good yields and diastereoselectivities (Table 3, entries 2-4). 6-MeO substituted isatylidene malononitrile showed lower reactivity and moderate yield was obtained (Table 3, entry 5). The introduction of N-methyl or N-benzyl exerted small influence on the yield and diastereoselectivity (Table 3, entries 6 and 7). Curcumins bearing both electrondonating and electron-withdrawing groups afforded the products in good yields and diastereoselectivities (Table 3, entries 8-11). The 2,5-di-MeO substituted substrate also gave a good result (Table 3, entry 12). The reaction is applicable for heteroaryl derivatives of curcumin (Table 3, entries 13 and 14), however low diastereoselectivity was observed for the thienyl derivative (Table 3, entry 14). On the other hand, the reaction of isatylidene

 Table 2
 Effect of reaction solvents^a

Entry	Solvent	dr	Time (h)	Yield (%)	
1	Hexane	80/20	72	21	
2	Toluene	76/24	72	84	
3	CH ₂ Cl ₂	78/12	72	80	
4	CHCl ₃	71/29	72	81	
5	THF	76/24	72	82	
6	AcOEt	71/29	18	80	
7	CH ₃ CN	85/15	18	88	
8	DMF	87/13	18	20	
9	<i>i</i> -PrOH	87/13	18	93	
10	MeOH	86/14	18	94	
11	EtOH	91/9	18	98	
12^b	EtOH	88/12	144	11	

^{*a*} The reactions were carried out with **1a** (0.05 mmol), **2a** (0.05 mmol) and DMAP (0.01 mmol) in solvent (1 mL) at room temperature. ^{*b*} The reaction was carried out at 0 $^{\circ}$ C.

 Table 3
 Cascade reaction of isatylidene malononitriles and curcumins^a

Table 5 Caseade reaction of isatyndene majonomitines and curculinis								
$R^{1} \xrightarrow{NC} CN \xrightarrow{Ar} O \xrightarrow{DMAP} NC \xrightarrow{Ar} O \xrightarrow{DMAP} NC \xrightarrow{NC} O \xrightarrow{NC} O$								
Entry	R^1	\mathbb{R}^2	Ar	dr ^b	Time (h)	Yield $(\%)^c$		
1	Н	Н	Ph	91/9	18	3a , 98		
2	5-MeO	Н	Ph	91/9	18	3b , 92		
3	5-Cl	Н	Ph	91/9	18	3c , 90		
4	7-Br	Н	Ph	89/11	18	3d , 94		
5	6-MeO	Н	Ph	88/12	40	3e , 53		
6	Н	Me	Ph	92/8	18	3f , 94		
7	Н	Bn	Ph	88/12	18	3g , 91		
8	Н	Η	4-MeO-C ₆ H ₄	89/11	18	3h , 92		
9	Н	Н	$4-Cl-C_6H_4$	95/5	18	3i , 99		
10	Н	Н	2-MeO-C ₆ H ₄	88/12	18	3j , 89		
11	Н	Н	$2-Cl-C_6H_4$	83/17	18	3k , 92		
12	Н	Η	2,5-Di-	88/12	24	31 , 87		
13	Н	Н	2-Furanyl	86/14	18	3m . 91		
14	Н	Η	2-Thienyl	75/25	18	3n , 97		

^{*a*} The reactions were carried out with **1a–1g** (0.05 mmol), **2a–2h** (0.05 mmol), DMAP (0.01 mmol) in EtOH (1 mL) at room temperature. ^{*b*} Determined by ¹H NMR analysis of the crude product. ^{*c*} Isolated yields after column chromatography.

malonate and isatylidene cyanoacetate with curcumin did not occur under the present reaction conditions. Their lower electrophilic reactivity may account for the result. The reaction of isatylidene nitromethane with curcumin did not generate the desired multicyclic spirooxindoles, instead partially polymerization of isatylidene nitromethane was observed.

The relative configuration of 3a was determined by X-ray diffraction analysis (Fig. 1).¹² The configuration of minor diastereoisomer 3a' was suggested based on its ¹H NMR and NOESY analysis. The relative configurations of products 3b-3n were assigned analogously.

Scheme 3 Plausible reaction mechanism.

Fig. 1 X-ray crystal structure of 3a.

A plausible reaction mechanism is proposed in Scheme 3. DMAP removes a proton from curcumin 2a to generate an enol anion. It attacks isatylidene malononitrile 1a and the resulting malononitrile anion I undergoes an intramolecular conjugate addition. The enol anion II is formed and subsequently takes part in an oxa-Michael reaction. A proton is transferred from DMAP/H⁺ to provide intermediate III. The product 3a is formed after a migration of the double bond in the intermediate III.

An asymmetric version of this reaction was studied using Takemoto's amine-thiourea as the catalyst, but only moderate yield and low enantioselectivity were achieved (Scheme 4).^{13,14}

In conclusion, we have developed an efficient synthesis of multicyclic spirooxindoles from readily available isatylidene malononitriles and curcumins. Curcumins work as multifunctional nucleophiles and electrophiles in this transformation. A reaction mechanism of cascade Michael/Michael/oxa-Michael addition and double bond migration is proposed. Further development of highly enantioselective version of this reaction is currently under investigation.

Scheme 4 Asymmetric reaction of isatylidene malononitrile and curcumin.

Acknowledgements

Financial support from the National Natural Science Foundation of China (Nos. 20972195, 21172270), Natural Science Foundation of Guangdong (No. 8451008901000380) and Fundamental Research Funds for the Central Universities is gratefully acknowledged.

Notes and references

- 1 C. V. Galliford and K. A. Scheidt, Angew. Chem., Int. Ed., 2007, 46, 8748.
- 2 G. Shaw and D. Prowse, *Cancer Cell Int.*, 2008, 8, 3.
- 3 A. Lerchner and E. M. Carreira, Chem.-Eur. J., 2006, 12, 8208.
- 4 M. Rottmann, C. McNamara, B. K. S. Yeung, M. C. S. Lee, B. Zou, B. Russell, P. Seitz, D. M. Plouffe, N. V. Dharia, J. Tan, S. B. Cohen, K. R. Spencer, G. E. González-Páez, S. B. Lakshminarayana, A. Goh, R. Suwanarusk, T. Jegla, E. K. Schmitt, H. Beck, R. Brun, F. Nosten, L. Renia, V. Dartois, T. H. Keller, D. A. Fidock, E. A. Winzeler and T. T. Diagana, *Science*, 2010, **329**, 1175.
- 5 For the reviews of the synthesis of multicyclic spirooxindoles, see: (a) B. M. Trost and M. K. Brennan, *Synthesis*, 2009, 3003; (b) L. F. Fu, *Top. Heterocycl. Chem.*, 2010, **26**, 433; (c) J. S. Russel, *Top. Heterocycl. Chem.*, 2011, **26**, 397; (d) J. J. Badillo, N. V. Hanhan and A. K. Franz, *Curr. Opin. Drug Discov. Dev.*, 2010, **13**, 758.
- 6 For the general reviews of cascade reactions, see: (a) D. Enders, C. Grondal and M. R. M. Hüttl, Angew. Chem., Int. Ed., 2007, 46, 1570;

(14) B. Westermann, M. Ayaz and S. S. van Berkel, *Angew. Chem., Int. Ed.*, 2009, **48**, 2; (c) D. Bonne, Y. Coquerel, T. Constantieux and J. Rodriguez, *Tetrahedron: Asymmetry*, 2010, **21**, 1085.

- 7 For recent examples of the synthesis of spirooxindoles via cascade reactions, see: (a) B. Tan, N. R. Candeias and C. F. Barbas III, Nat. Chem., 2011, 3, 473; (b) K. Jiang, Z. J. Jia, X. Yin, L. Wu and Y. C. Chen, Org. Lett., 2011, 12, 2766; (c) Y. B. Lan, H. Zhao, Z. M. Liu, G. G. Liu, J. C. Tao and X. W. Wang, Org. Lett., 2011, 13, 4866; (d) G. Bencivenni, L. Y. Wu, A. Mazzanti, B. Giannichi, F. Pesciaioli, M. P. Song, G. Bartoli and P. Melchiorre, Angew. Chem., Int. Ed., 2009, 48, 7200; (e) Y. M. Cao, X. X. Jiang, L. P. Liu, F. F. Shen, F. T. Zhang and R. Wang, Angew. Chem., Int. Ed., 2011, 50, 9124; (f) L. L. Wang, L. Peng, J. F. Bai, Q. C. Huang, X. Y. Xu and L. X. Wang, Chem. Commun., 2010, 46, 8064; (g) X. Companyó, A. Zea, A. R. Alba, A. Mazzanti, A. Moyano and R. Rios, Chem. Commun., 2010, 46, 6953; (h) I. Allous, S. Comesse, M. Sanselme and A. Daïch, Eur. J. Org. Chem., 2011, 5303.
- 8 (a) N. H. Luo, X. Sun, Y. Y. Yan, S. Z. Nie and M. Yan, *Tetrahedron: Asymmetry*, 2011, **22**, 1536; (b) X. M. Li, B. Wang, J.M. Zhang and M. Yan, *Org. Lett.*, 2011, **13**, 374; (c) Z. P. Hu, C. L. Lou, J. J. Wang, C. X. Chen and M. Yan, *J. Org. Chem.*, 2011, **76**, 3797; (d) J. J. Wang, Z. P. Hu, C. L. Lou, J. L. Liu, X. M. Li and M. Yan, *Tetrahedron*, 2011, **67**,

4578; (e) L. T. Dong, Q. S. Du, C. L. Lou, J. M. Zhang, R. J. Lu and M. Yan, *Synlett*, 2010, 266; (f) J. M. Zhang, Z. P. Hu, S. Q. Zhao and M. Yan, *Tetrahedron*, 2009, **65**, 802; (g) J. M. Zhang, Z. P. Hu, L. T. Dong, Y. N. Xuan and M. Yan, *Tetrahedron: Asymmetry*, 2009, **20**, 355; (h) Y. N. Xuan, S. Z. Nie, L. T. Dong, J. M. Zhang and M. Yan, *Org. Lett.*, 2009, **11**, 1583.

- 9 I. Chattopadhyay, K. Biswas, U. Bandyopadhyay and R. K. Banerjee, Curr. Sci., 2004, 87, 44.
- 10 W. J. Li, W. B. Wu, F. Yu, H. C. Huang, X. M. Liang and J. X. Ye, Org. Biomol. Chem., 2011, 9, 2505.
- 11 N. Ayyagari, D. Jose, S. M. Mobin and I. N. N. Namboothiri, *Tetrahe-dron Lett.*, 2011, 52, 258.
- 12 CCDC 847692 contains the supplementary crystallographic data for this paper
- 13 (a) T. Okino, Y. Hoashi and Y. Takemoto, J. Am. Chem. Soc., 2003, 125, 12672; (b) T. Okino, Y. Hoashi, T. Furukawa, X. Xu and Y. Takemoto, J. Am. Chem. Soc., 2004, 127, 119; (c) T. Inokuma, Y. Hoashi and Y. Takemoto, J. Am. Chem. Soc., 2006, 128, 9413; (d) Y. Hoashi, T. Yabuta, P. Yuan, H. Miyabe and Y. Takemoto, *Tetrahedron*, 2006, 62, 365.
- 14 Please see the supplementary information[‡] for the details about the screening of chiral organocatalysts and reaction solvents